Nonlinear Dimension Reduction via Outer Bi-Lipschitz Extensions

Sepideh Mahabadi

Konstantin Makarychev Northwestern University

Yury Makarychev

Ilya Razenshteyn MSR Redmond

Dimension Reduction

Given: a set of n points in a d dimensional space

• Can represent feature vectors of a set of objects such as images, documents, etc.

Dimension Reduction

Given: a set of n points in a d dimensional space

• Can represent feature vectors of a set of objects such as images, documents, etc.

Dimension Reduction: reduce dimension of the points, i.e., embed them into a lower dimensional space while preserving pairwise distances

Less storage

Less communication to transmit the data

Less computation

Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: every set $X \subset \mathbb{R}^d$ of size n can be embedded into $\mathbb{R}^{d'}$ where $d' = O(\frac{\log n}{\epsilon^2})$ such that the distances are preserved up to a factor of $(1 + \epsilon)$.

Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: every set $X \subset \mathbb{R}^d$ of size n can be embedded into $\mathbb{R}^{d'}$ where $d' = O(\frac{\log n}{\epsilon^2})$ such that the distances are preserved up to a factor of $(1 + \epsilon)$.

Applied in a diverse range of areas such as streaming algorithms, nearest neighbor search, graph sparsification, compressed sensing, ...

Known to be tight [Larsen, Nelson'17]

> The points might not be equally important:

- E.g. They might represent feature vectors of objects (e.g. images, documents) and some are used more often.
- Or facilities/users where facilities are accessed more frequently
- High influential vs low influential users in a social media

> The points might not be equally important:

- E.g. They might represent feature vectors of objects (e.g. images, documents) and some are used more often.
- Or facilities/users where facilities are accessed more frequently
- High influential vs low influential users in a social media

For them we want to use even less coordinates.

> The points might not be equally important:

- E.g. They might represent feature vectors of objects (e.g. images, documents) and some are used more often.
- Or facilities/users where facilities are accessed more frequently
- High influential vs low influential users in a social media

- Prioritized/Terminal Dimension Reduction introduced by Elkin, Filtser and Neiman'15.
 - The main motivation of this work.

Plan

- 1. Definitions and background
- 2. Introduce Outer Bi-Lipschitz Extension

New Notion

3. Present our extension results

> Main Technique

4. Present its applications to dimension

reduction

Extension of Functions

Notation throughout the talk

- We have a function $f: A \to \mathbb{R}^m$
- Which is defined over a subset $A \subset \mathbb{R}^n$

Extensions of the map *f* to a superset of *A*.

Extension of Functions

Notation throughout the talk

- We have a function $f: A \to \mathbb{R}^m$
- Which is defined over a subset $A \subset \mathbb{R}^n$

Extensions of the map *f* to a superset of *A*.

- f'(x) = f(x) for any $x \in A$
- Maintaining other properties ...

Extension of Functions

Notation throughout the talk

- We have a function $f: A \to \mathbb{R}^m$
- Which is defined over a subset $A \subset \mathbb{R}^n$

Extensions of the map *f* to a superset of *A*.

 \Box Extension to the whole \mathbb{R}^n , i.e., $f': \mathbb{R}^n \to \mathbb{R}^m$ so that

- f'(x) = f(x) for any $x \in A$
- Maintaining other properties ...
- 1. Lipschitz Constant (Lipschitz Extension)
- 2. Bi-Lipschitz Constant, i.e., distortion

(Bi-Lipschitz Extension)

□ A map $f: X \to Y$ is *C***-Lipschitz** if for all $x, x' \in X$:

$$\|f(x) - f(x')\| \le C \cdot \|x - x'\|$$
 Euclidean

A map $f: X \to Y$ is *C***-Lipschitz** if for all $x, x' \in X$:

 $\|f(x) - f(x')\| \le C \cdot \|x - x'\|$ Euclidean Euclidean

Lipschitz extension:

Given: a *C*-Lipschitz map $f: A \to \mathbb{R}^m$, where $A \subseteq \mathbb{R}^n$

A map $f: X \to Y$ is *C***-Lipschitz** if for all $x, x' \in X$:

 $\|f(x) - f(x')\| \le C \cdot \|x - x'\|$ Euclidean

Lipschitz extension:

Given: a *C*-Lipschitz map $f: A \to \mathbb{R}^m$, where $A \subseteq \mathbb{R}^n$ **Goal:** a map $f': \mathbb{R}^n \to \mathbb{R}^m$ s.t.

- *f*′ is an extension of *f*
- *f*′ is *C*′-Lipschitz

A map $f: X \to Y$ is *C***-Lipschitz** if for all $x, x' \in X$:

 $\|f(x) - f(x')\| \le C \cdot \|x - x'\|$ Euclidean

 \mathbb{R}^{n} C f' \mathbb{R}^{m} C

Lipschitz extension:

Given: a *C*-Lipschitz map $f: A \to \mathbb{R}^m$, where $A \subseteq \mathbb{R}^n$ **Goal:** a map $f': \mathbb{R}^n \to \mathbb{R}^m$ s.t.

- *f* ' is an extension of *f*
- *f*′ is *C*′-Lipschitz

Kirszbraun extension theorem '34: for $A \subset \mathbb{R}^n$, every *C*-Lipschitz map $f: A \to \mathbb{R}^m$ can be extended to the whole \mathbb{R}^n keeping the **same** Lipschitz constant, i.e., C' = C.

Bi-Lipschitz Counterpart of the Kirszbraun theorem?

Kirszbraun extension theorem '34: For $A \subset \mathbb{R}^n$, every *C*-Lipschitz map $f: A \to \mathbb{R}^m$ can be extended to the whole \mathbb{R}^n keeping the same Lipschitz constant.

□ A map $f: X \to Y$ is *D***-bi-Lipschitz** or has **distortion** *D*

if for some λ and all $x, x' \in X$:

 $\lambda \cdot \|\mathbf{x} - \mathbf{x}'\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')\| \le D \cdot \lambda \cdot \|\mathbf{x} - \mathbf{x}'\|$

A map $f: X \to Y$ is *D***-bi-Lipschitz** or has **distortion** *D*

if for some λ and all $x, x' \in X$:

 $\lambda \cdot \|\mathbf{x} - \mathbf{x}'\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')\| \le D \cdot \lambda \cdot \|\mathbf{x} - \mathbf{x}'\|$

Is there a counterpart of the Kirszbraun theorem for bi-Lipschitz maps?

For A ⊂ ℝⁿ, can every map f: A → ℝ^m of distortion D be extended to the whole ℝⁿ keeping the same distortion?

A map $f: X \to Y$ is *D***-bi-Lipschitz** or has **distortion** *D*

if for some λ and all $x, x' \in X$:

 $\lambda \cdot \|\mathbf{x} - \mathbf{x}'\| \le \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}')\| \le D \cdot \lambda \cdot \|\mathbf{x} - \mathbf{x}'\|$

Is there a counterpart of the Kirszbraun theorem for bi-Lipschitz maps?

- For $A \subset \mathbb{R}^n$, can every map $f: A \to \mathbb{R}^m$ of distortion D be extended to the whole \mathbb{R}^n keeping the same distortion?
 - No direct analogue!
 - even if we allow D' > D
 - Not even a 1-1 continuous map

Example

Example

• No 1-1 continuous extension map from \mathbb{R} to \mathbb{R}

Example

- No 1-1 continuous extension map from \mathbb{R} to \mathbb{R}
- There exists such a map from ℝ to ℝ²
 Fix: Allow additional coordinates

Bi-Lipschitz Outer-Extension

Given: a map $f: A \to \mathbb{R}^m$, where

- $A \subseteq X \subset \mathbb{R}^n$
- *f* has distortion *D*

Bi-Lipschitz Outer-Extension

Given: a map $f: A \to \mathbb{R}^m$, where

- $A \subseteq X \subset \mathbb{R}^n$
- f has distortion D

Goal: a map $f': X \to \mathbb{R}^{m'}$, where

- m' > m
- f' has distortion D'
- f' is an **(outer)-extension** of f: for every $x \in A$

$$f'(x) = f(x) \bigoplus (0, \dots, 0)$$
$$\mathbf{m}' - \mathbf{m}$$

Results

Consider a *D*-bi-Lipschitz map $f: A \to \mathbb{R}^m$ where $A \subset \mathbb{R}^n$,

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \Theta(\sqrt{\epsilon})$	\mathbb{R}^{m+1}
1	1	$1+\epsilon$	To $\mathbb R$	$1 + \Theta(\frac{1}{\log^2 1/\epsilon})$	ℝ ²

□ Show applications to dimension reduction

Results

Consider a *D*-bi-Lipschitz map $f: A \to \mathbb{R}^m$ where $A \subset \mathbb{R}^n$,

n	m	Initial distortion		New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \Theta(\sqrt{\epsilon})$	\mathbb{R}^{m+1}
1	1	$1 + \epsilon$	To $\mathbb R$	$1 + \Theta(\frac{1}{\log^2 1/\epsilon})$	ℝ ²

□ Show applications to dimension reduction

Counterpart of Kirszbraun

Given a map

• $f(x): A \to \mathbb{R}^m$ (where $A \subset \mathbb{R}^n$) with distortion D

Come up with a bi-Lipschitz outer-extension of the map

• $f'(x): \mathbb{R}^n \to \mathbb{R}^{m'}$

Counterpart of Kirszbraun

Given a map

• $f(x): A \to \mathbb{R}^m$ (where $A \subset \mathbb{R}^n$) with distortion D

Come up with a bi-Lipschitz outer-extension of the map

• $f'(x): \mathbb{R}^n \to \mathbb{R}^{m'}$

New bi-Lipschitz outer extension:

Two applications of the Kirszbraun Lipschitz extension Theorem.

Let

- $f(x): A \to \mathbb{R}^m$ be our map
- $\tilde{f}(x): \mathbb{R}^n \to \mathbb{R}^m$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$f'(x) = \tilde{f}(x)$$

The distances might decrease a lot!

Let

- $f(x): A \to \mathbb{R}^m$ be our map
- $\tilde{f}(x): \mathbb{R}^n \to \mathbb{R}^m$ be its Lipschitz extension

New bi-Lipschitz outer extension:

 $f'(x) = \tilde{f}(x) \oplus h(x)$

The distances might decrease a lot!

 \checkmark Add the second component h(x)

- h(x) = 0 for all $x \in A$
- When \tilde{f} contracts h should expand

Let

• $f(x): A \to \mathbb{R}^m$ be our map • $\tilde{f}(x): \mathbb{R}^n \to \mathbb{R}^m$ be its Lipschitz extension • $g = f^{-1}: f(A) \to \mathbb{R}^n$ be its inverse • $\tilde{g}(x): \mathbb{R}^m \to \mathbb{R}^n$ be its Lipschitz extension New bi-Lipschitz outer extension: $f'(x) = \tilde{f}(x) \oplus h(x)$ where $h(x) = \tilde{g}(\tilde{f}(x))$

\checkmark Add the second component h(x)

- h(x) = 0 for all $x \in A$
- When \tilde{f} contracts h should expand

Let

• $f(x): A \to \mathbb{R}^m$ be our map • $\tilde{f}(x): \mathbb{R}^n \to \mathbb{R}^m$ be its Lipschitz extension • $g = f^{-1}: f(A) \to \mathbb{R}^n$ be its inverse • $\tilde{g}(x): \mathbb{R}^m \to \mathbb{R}^n$ be its Lipschitz extension New bi-Lipschitz outer extension: $f'(x) = \tilde{f}(x) \oplus h(x)$ where $h(x) = \tilde{g}(\tilde{f}(x)) - x$

\checkmark Add the second component h(x)

• h(x) = 0 for all $x \in A$

- $\tilde{g}\left(\tilde{f}(x)\right) x = g(f(x)) x = 0$
- When *f* contracts *h* should expand

Let

- $f(x): A \to \mathbb{R}^m$ be our map
- $\tilde{f}(x): \mathbb{R}^n \to \mathbb{R}^m$ be its Lipschitz extension
- $g = f^{-1}: f(A) \to \mathbb{R}^n$ be its inverse
- $\widetilde{g}(x): \mathbb{R}^m \to \mathbb{R}^n$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$f'(x) = \tilde{f}(x) \oplus h(x)$$
 where $h(x) = \frac{\tilde{g}(\tilde{f}(x)) - x}{\sqrt{2}D}$

$$\checkmark$$
 f' is from \mathbb{R}^n to \mathbb{R}^{n+m}

$$\checkmark \quad \text{For } x \in A, \, \boldsymbol{f}(x) = \boldsymbol{f}'(x)$$

Distortion is at most 3D

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \Theta(\sqrt{\epsilon})$	\mathbb{R}^{m+1}
1	1	$1 + \epsilon$	To $\mathbb R$	$1 + \Theta(rac{1}{log^2 1/\epsilon})$	\mathbb{R}^2

□ Show applications to dimension reduction

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \Theta(\sqrt{\epsilon})$	\mathbb{R}^{m+1}
1	1	1 + ε	To $\mathbb R$	$1 + \Theta(rac{1}{log^2 1/\epsilon})$	\mathbb{R}^2

□ Show applications to dimension reduction

Input:

- a set of n points P in \mathbb{R}^d
- a ranking π on them: a bijection from P to [n]

Goal: reduce the dimension s.t.

 $f(x) \in \mathbb{R}^{g(r)} \subset \mathbb{R}^{c \log n}$

• where $r = \pi(x)$ is the rank of x and g is polylogarithmic

Input:

- a set of n points P in \mathbb{R}^d
- a ranking π on them: a bijection from P to [n]

Goal: reduce the dimension s.t.

 $f(x) \in \mathbb{R}^{g(r)} \subset \mathbb{R}^{c \log n}$

• where $r = \pi(x)$ is the rank of x and g is polylogarithmic

	Distortion	#Non-zero
[Elkin, Filtser, Neiman, STOC'15]	${\it O}_{\epsilon}(\log^{4+\epsilon}r)$	$O_{\epsilon}(\log^4 r)$
This work	$O(\log \log r)$	$\boldsymbol{O}_{\epsilon}(\log^{3+\epsilon}r)$

Input:

- a set of n points P in \mathbb{R}^d
- a ranking π on them: a bijection from P to [n]

Goal: reduce the dimension s.t.

 $f(x) \in \mathbb{R}^{g(r)} \subset \mathbb{R}^{c \log n}$

• where $r = \pi(x)$ is the rank of x and g is polylogarithmic

	Distortion	#Non-zero
[Elkin, Filtser, Neiman, STOC'15]	${\it O}_{\epsilon}(\log^{4+\epsilon}r)$	$O_{\epsilon}(\log^4 r)$
This work	$O(\log \log r)$	$\boldsymbol{O}_{\epsilon}(\log^{3+\epsilon}r)$

For two points at rank r and t,

- The time to compute their distance only depends on polylog(max{*r*, *t*})
- The distortion of their distance depends on $\log \log (\max\{r, t\})$

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Construction of f_i from f_{i-1}

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$f'_{i-1}(x) = \widetilde{f_{i-1}}(x) \oplus h(x)$$

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Construction of f_i from f_{i-1}

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$\begin{aligned} f'_{i-1}(x) &= \widetilde{f_{i-1}}(x) \oplus h(x) \\ \uparrow & \uparrow \\ \text{Bi-Lip ext.} & \text{Lip ext.} \end{aligned}$$

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Construction of f_i from f_{i-1}

1. The new bi-Lipschitz outer-extension on f_{i-1} :

 $f'_{i-1}(x) = \widetilde{f_{i-1}}(x) \oplus h(x)$

We do not change the map on S_{i-1} No new coordinates

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Construction of f_i from f_{i-1}

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$f'_{i-1}(x) = \widetilde{f_{i-1}}(x) \oplus h(x)$$

- We do not change the map on S_{i-1}
- No new coordinates
- $f_{i-1}: \mathbb{R}^d \to \mathbb{R}^{d_{i-1}}$
- $d_i = d_{i-1} + d > d$

• •

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Construction of f_i from f_{i-1}

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$f'_{i-1}(x) = \widetilde{f_{i-1}}(x) \oplus h(x)$$

- Use JL
 - Reduce dimension
 - No longer an extension of f_{i-1}

Grouping based on priorities

- $S_1 \subset S_2 \subset \cdots S_T$
- *S*₁ have the highest priority points.

□ Iterative Extension:

- Given $f_{i-1}: S_{i-1} \to \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_i: S_i \to \mathbb{R}^{d_i}$

Construction of f_i from f_{i-1}

1. The new bi-Lipschitz outer-extension on f_{i-1} :

 $f'_{i-1}(x) = \widetilde{f_{i-1}}(x) \oplus h(x)$

 Compose partially with the JL mapping J to reduce dimension

Final Map:

 $f_i(x) = \widetilde{f_{i-1}}(x) \oplus J(h(x))$

Details

Group sizes:

• S_i : first $2^{2^{C^i}}$ points for a constant $C \approx 4$

Details

Group sizes:

• S_i : first $2^{2^{C^i}}$ points for a constant $C \approx 4$

Dimension:

• A point at rank $r = 2^{2^{c^{i}}} + 1$:

• Dimension is
$$\log(2^{2^{C^{i+1}}}) = 2^{C^{i} \cdot C} = (2^{C^{i}})^{C} = (\log r)^{C}$$

Details

Group sizes:

• S_i : first $2^{2^{C^i}}$ points for a constant $C \approx 4$

Dimension:

• A point at rank
$$r = 2^{2^{C^{l}}} + 1$$
:

• Dimension is
$$\log(2^{2^{C^{i+1}}}) = 2^{C^{i} \cdot C} = (2^{C^{i}})^{C} = (\log r)^{C}$$

Distortion:

• Distortion is $3^{\#groups} = 3^i = 3^{\log \log \log r} = O(\log \log r)$

	Distortion	#Non-zero
[Elkin, Filtser, Neiman, STOC'15]	${\it O}_{\epsilon}(log^{4+\epsilon}r)$	$\boldsymbol{O}_{\boldsymbol{\epsilon}}(\log^4 r)$
This work	$O(\log \log r)$	$O(\frac{\log^{3+\epsilon}r}{\epsilon^2})$
Setting parameters differently	$O((3+\epsilon)^t)$	$O(\frac{\log r \log^{1/t} n}{\epsilon^2})$
Open Problem	$(1 + \epsilon)$	$O(\frac{\log r}{\epsilon^2})$

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \Theta(\sqrt{\epsilon})$	\mathbb{R}^{m+1}
1	1	1 + ε	To $\mathbb R$	$1 + \Theta(rac{1}{log^2 1/\epsilon})$	ℝ ²

□ Show applications to dimension reduction

Extension by One Point

Given

- a map $f: A \to \mathbb{R}^m$ (where $A \subset \mathbb{R}^n$) that has distortion $1 + \epsilon$
- and any point $u \in \mathbb{R}^n$,

we can always extend the map to that point, i.e., $f': A \cup \{u\} o \mathbb{R}^{m+1}$

Increasing the distortion to $1 + \sqrt{\epsilon}$

Using Minimax Theorem

• $f: \{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1 + \epsilon)$

- $f: \{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1 + \epsilon)$
- Its extension to *D* increases the distortion to $1 + \Omega(\sqrt{\epsilon})$

- $f: \{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1 + \epsilon)$
- Its extension to *D* increases the distortion to $1 + \Omega(\sqrt{\epsilon})$

•
$$||f(D) - f(A)|| \ge \sqrt{\epsilon} \left(1 - \frac{\sqrt{\epsilon}}{2}\right) = \left(\sqrt{\epsilon} - \frac{\epsilon}{2}\right)$$

- $f: \{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1 + \epsilon)$
- Its extension to *D* increases the distortion to $1 + \Omega(\sqrt{\epsilon})$

•
$$||f(D) - f(B)|| < (\sqrt{\epsilon} - \epsilon) \left(1 + \frac{\sqrt{\epsilon}}{2}\right) = \left(\sqrt{\epsilon} - \frac{\epsilon}{2}\right)$$

- $f: \{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1 + \epsilon)$
- Its extension to *D* increases the distortion to $1 + \Omega(\sqrt{\epsilon})$

•
$$\frac{\|f(D) - f(C)\|}{\|D - C\|} > \frac{1}{1 - \sqrt{\epsilon}} > 1 + \sqrt{\epsilon}$$

Input: a set $X \subset \mathbb{R}^d$ of *n* terminals

Goal: find a map $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ s.t. for any $p \in \mathbb{R}^d$ and any terminal $x \in X$,

 $\|x-p\| \leq \|f(x)-f(p)\| \leq D \cdot \|x-p\|$

Input: a set $X \subset \mathbb{R}^d$ of *n* terminals

Goal: find a map $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ s.t. for any $p \in \mathbb{R}^d$ and any terminal $x \in X$,

 $\|x-p\| \leq \|f(x)-f(p)\| \leq D \cdot \|x-p\|$

	Distortion	Dimension <i>d</i> '
[Elkin, Filtser, Neiman, '17]	0 (1)	O (log <i>n</i>)
This work	$1 + \epsilon$	$O(\frac{\log n}{\epsilon^4})$
[Narayanan, Nelson, '19]	$1+\epsilon$	$O(\frac{\log n}{\epsilon^2})$

Input: a set $X \subset \mathbb{R}^d$ of *n* terminals

Goal: find a map $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ s.t. for any $p \in \mathbb{R}^d$ and any terminal $x \in X$,

 $||x - p|| \le ||f(x) - f(p)|| \le D \cdot ||x - p||$

• Apply JL on the set of terminals X to get a $(1 + \epsilon^2)$ -distortion embedding $\frac{\log n}{\epsilon^4}$ dimensions

	Distortion	Dimension <i>d</i> '
[Elkin, Filtser, Neiman, '17]	0 (1)	$O(\log n)$
This work	$1 + \epsilon$	$O(\frac{\log n}{\epsilon^4})$
[Narayanan, Nelson, '19]	$1+\epsilon$	$O(\frac{\log n}{\epsilon^2})$

Input: a set $X \subset \mathbb{R}^d$ of *n* terminals

Goal: find a map $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ s.t. for any $p \in \mathbb{R}^d$ and any terminal $x \in X$,

 $||x - p|| \le ||f(x) - f(p)|| \le D \cdot ||x - p||$

- Apply JL on the set of terminals X to get a $(1 + \epsilon^2)$ -distortion embedding $\frac{\log n}{\epsilon^4}$ dimensions
- Use an extra dimension to simultaneously extend the map to all nonterminal points independently using our single point extension. $(1 + \epsilon)$ -distortion

	Distortion	Dimension <i>d</i> '
[Elkin, Filtser, Neiman, '17]	0 (1)	0 (log <i>n</i>)
This work	$1 + \epsilon$	$O(\frac{\log n}{\epsilon^4})$
[Narayanan, Nelson, '19]	$1+\epsilon$	$O(\frac{\log n}{\epsilon^2})$

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \Theta(\sqrt{\epsilon})$	\mathbb{R}^{m+1}
1	1	1 + ε	To ${\mathbb R}$	$1 + \Theta(rac{1}{log^2 1/\epsilon})$	ℝ ²

□ Show applications to dimension reduction

Given: a $(1 + \epsilon)$ -distortion map $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$ **Goal:** extend it to the whole line \mathbb{R} , i.e., $f': \mathbb{R} \to \mathbb{R}^2$

Given: a $(1 + \epsilon)$ -distortion map $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$

such a map should be very structured.

Given: a $(1 + \epsilon)$ -distortion map $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$

such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: (1,2,4,3)

Given: a $(1 + \epsilon)$ -distortion map $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$

such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: (1,2,4,3), (2,1,4,3)

Given: a $(1 + \epsilon)$ -distortion map $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$

such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: (1,2,4,3), (2,1,4,3), (2,3,4,1)

Given: a $(1 + \epsilon)$ -distortion map $f: A \to \mathbb{R}$ where $A \subset \mathbb{R}$

such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: (1,2,4,3), (2,1,4,3), (2,3,4,1), (3,4,2,1), ...

Consider the permutation corresponding to the ordering defined by the map. *Are all permutations possible?*

Consider the permutation corresponding to the ordering defined by the map. *Are all permutations possible?*

Lemma 1: a permutation is valid iff it excludes (3,1,4,2) and (2,4,1,3) as a "sub-permutation"

Permutation: 4625731

Consider the permutation corresponding to the ordering defined by the map. *Are all permutations possible?*

Lemma 1: a permutation is valid iff it excludes (3,1,4,2) and (2,4,1,3) as a "sub-permutation"

Permutation: 4625731 Not valid: 4625731 6273 3142

Consider the permutation corresponding to the ordering defined by the map. *Are all permutations possible?*

- Lemma 1: a permutation is valid iff it excludes (3,1,4,2) and (2,4,1,3) as a "sub-permutation"
- Lemma 2: such a permutation can be decomposed into a sequence of "laminar flips" (reversing an interval)
- $(1,2,3,4,5,6) \rightarrow (\mathbf{3},\mathbf{2},\mathbf{1},4,5,6) \rightarrow (\mathbf{3},\mathbf{1},\mathbf{2},4,5,6) \rightarrow (\mathbf{3},1,2,4,\mathbf{6},\mathbf{5})$

Spirals

Basic case: consider f which maps $(0, \epsilon, 1)$ to $(0, -\epsilon, 1)$; extend it to the segment [0,1]

Spirals

- **Basic case:** consider f which maps $(0, \epsilon, 1)$ to $(0, -\epsilon, 1)$; extend it to the segment [0,1]
- Map using a single **spiral**
 - Map $[0, \epsilon]$ to $[0, -\epsilon]$ linearly
 - For $\epsilon \le x \le 1$ map x to $g(x) = (r(x), \phi(x))$ in polar coordinates

•
$$r(x) = x$$
 and $\phi(x) = \frac{\pi \ln 1/x}{\ln 1/\epsilon}$

- **Distortion** is $1 + O(1/\ln^2(1/\epsilon))$
- This is **tight!**

Spirals

- **Basic case:** consider f which maps $(0, \epsilon, 1)$ to $(0, -\epsilon, 1)$; extend it to the segment [0,1]
- Map using a single **spiral**
 - Map $[0, \epsilon]$ to $[0, -\epsilon]$ linearly
 - For $\epsilon \le x \le 1$ map x to $g(x) = (r(x), \phi(x))$ in polar coordinates

•
$$r(x) = x$$
 and $\phi(x) = \frac{\pi \ln 1/x}{\ln 1/\epsilon}$

- **Distortion** is $1 + O(1/\ln^2(1/\epsilon))$
- This is **tight!**

General case: for each flip

• we add a spiral of the "right" scale

Open Problems

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \mathbf{\Theta} ig(\sqrt{\epsilon} ig)$	\mathbb{R}^{m+1}
1	1	$1 + \epsilon$	To ℝ	$1 + \Theta(rac{1}{log^2 1/\epsilon})$	\mathbb{R}^2
any	any	$1 + \epsilon$	To \mathbb{R}^n	$1 + g(\epsilon)$?

Prioritized Dimension Reduction

Distortion	#Non-zero
$1 + \epsilon$	$(\log r)/\epsilon^2$

Open Problems

Thanks! Questions?

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	D	To \mathbb{R}^n	3 <i>D</i>	\mathbb{R}^{n+m}
any	any	$1 + \epsilon$	one point	$1 + \mathbf{\Theta} ig(\sqrt{\epsilon} ig)$	\mathbb{R}^{m+1}
1	1	$1 + \epsilon$	To ℝ	$1 + \Theta(rac{1}{log^2 1/\epsilon})$	\mathbb{R}^2
any	any	$1 + \epsilon$	To \mathbb{R}^n	$1 + g(\epsilon)$?

Prioritized Dimension Reduction

Distortion	#Non-zero
$1 + \epsilon$	$(\log r)/\epsilon^2$