Nonlinear Dimension Reduction via Outer Bi-Lipschitz Extensions

Sepideh Mahabadi TTIC

Yury Makarychev
TTIC

Konstantin Makarychev
Northwestern University

Ilya Razenshteyn
MSR Redmond

Dimension Reduction

Given: a set of n points in a dimensional space

- Can represent feature vectors of a set of objects such as images, documents, etc.

Dimension Reduction

Given: a set of n points in a dimensional space

- Can represent feature vectors of a set of objects such as images, documents, etc.

Dimension Reduction: reduce dimension of the points, i.e., embed them into a lower dimensional space while preserving pairwise distances
$>$ Less storage
$>$ Less communication to transmit the data
$>$ Less computation

Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: every set $X \subset \mathbb{R}^{d}$ of size n can be embedded into $\mathbb{R}^{d^{\prime}}$ where $d^{\prime}=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that the distances are preserved up to a factor of $(1+\epsilon)$.

Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma: every set $X \subset \mathbb{R}^{d}$ of size n can be embedded into $\mathbb{R}^{d^{\prime}}$ where $d^{\prime}=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that the distances are preserved up to a factor of $(1+\epsilon)$.
$>$ Applied in a diverse range of areas such as streaming algorithms, nearest neighbor search, graph sparsification, compressed sensing, ...
> Known to be tight [Larsen,Nelson'17]

Prioritized Dimension Reduction

> The points might not be equally important:

- E.g. They might represent feature vectors of objects (e.g. images, documents) and some are used more often.
- Or facilities/users where facilities are accessed more frequently
- High influential vs low influential users in a social media

Prioritized Dimension Reduction

$>$ The points might not be equally important:

- E.g. They might represent feature vectors of objects (e.g. images, documents) and some are used more often.
- Or facilities/users where facilities are accessed more frequently
- High influential vs low influential users in a social media
> For them we want to use even less coordinates.

Prioritized Dimension Reduction

$>$ The points might not be equally important:

- E.g. They might represent feature vectors of objects (e.g. images, documents) and some are used more often.
- Or facilities/users where facilities are accessed more frequently
- High influential vs low influential users in a social media
> For them we want to use even less coordinates.

$>$ Prioritized/Terminal Dimension Reduction introduced by Elkin, Filtser and Neiman'15.
- The main motivation of this work.

Prioritized Dimension Reduction

Prioritized Dimension Reduction

Prioritized Dimension Reduction

Plan

1. Definitions and background
2. Introduce Outer Bi-Lipschitz Extension
> New Notion
3. Present our extension results
> Main Technique
4. Present its applications to dimension reduction

Extension of Functions

Notation throughout the talk

- We have a function $f: A \rightarrow \mathbb{R}^{m}$
- Which is defined over a subset $A \subset \mathbb{R}^{n}$

Extensions of the map f to a superset of \boldsymbol{A}.

Extension of Functions

Notation throughout the talk

- We have a function $f: A \rightarrow \mathbb{R}^{m}$
- Which is defined over a subset $A \subset \mathbb{R}^{n}$

Extensions of the map f to a superset of \boldsymbol{A}.
\square Extension to the whole \mathbb{R}^{n}, i.e., $f^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so that

- $f^{\prime}(x)=f(x)$ for any $x \in A$
- Maintaining other properties ...

Extension of Functions

Notation throughout the talk

- We have a function $f: A \rightarrow \mathbb{R}^{m}$
- Which is defined over a subset $A \subset \mathbb{R}^{n}$

Extensions of the map f to a superset of \boldsymbol{A}.
\square Extension to the whole \mathbb{R}^{n}, i.e., $f^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so that

- $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ for any $x \in A$
- Maintaining other properties ...

1. Lipschitz Constant (Lipschitz Extension)
2. Bi-Lipschitz Constant, i.e., distortion
(Bi-Lipschitz Extension)

Lipschitz Extension

ㅁ A map $f: X \rightarrow Y$ is C-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq C \cdot\left\|x-x^{\prime}\right\| \Longrightarrow \text { Euclidean }
$$

Lipschitz Extension

- A map $f: X \rightarrow Y$ is C-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq C \cdot\left\|x-x^{\prime}\right\| \Longrightarrow \text { Euclidean }
$$

- Lipschitz extension:

Given: a C-Lipschitz map $f: A \rightarrow \mathbb{R}^{\boldsymbol{m}}$, where $A \subseteq \mathbb{R}^{\boldsymbol{n}}$

Lipschitz Extension

- A map $f: X \rightarrow Y$ is C-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq \boldsymbol{C} \cdot\left\|x-x^{\prime}\right\| \Longrightarrow \text { Euclidean }
$$

- Lipschitz extension:

Given: a C-Lipschitz map $f: A \rightarrow \mathbb{R}^{\boldsymbol{m}}$, where $A \subseteq \mathbb{R}^{\boldsymbol{n}}$
Goal: a map $f^{\prime}: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ s.t.

- f^{\prime} is an extension of f
- f^{\prime} is C^{\prime}-Lipschitz

Lipschitz Extension

- A map $f: X \rightarrow Y$ is C-Lipschitz if for all $x, x^{\prime} \in X$:

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq \boldsymbol{C} \cdot\left\|x-x^{\prime}\right\| \Longrightarrow \text { Euclidean }
$$

- Lipschitz extension:

Given: a C-Lipschitz map $f: A \rightarrow \mathbb{R}^{\boldsymbol{m}}$, where $A \subseteq \mathbb{R}^{\boldsymbol{n}}$
Goal: a map $f^{\prime}: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ s.t.

- f^{\prime} is an extension of f
- f^{\prime} is C^{\prime}-Lipschitz

Kirszbraun extension theorem '34: for $\boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{n}}$, every C-Lipschitz $\operatorname{map} \boldsymbol{f}: \boldsymbol{A} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ can be extended to the whole \mathbb{R}^{n} keeping the same Lipschitz constant, i.e., $C^{\prime}=C$.

Bi-Lipschitz Counterpart of the Kirszbraun theorem?

Kirszbraun extension theorem '34: For $\boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{n}}$, every C Lipschitz map $\boldsymbol{f}: \boldsymbol{A} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ can be extended to the whole \mathbb{R}^{n} keeping the same Lipschitz constant.

Bi-Lipschitz Extension

- A map $f: X \rightarrow Y$ is D-bi-Lipschitz or has distortion D
if for some λ and all $x, x^{\prime} \in X$:

$$
\lambda \cdot\left\|x-x^{\prime}\right\| \leq\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq D \cdot \lambda \cdot\left\|x-x^{\prime}\right\|
$$

Bi-Lipschitz Extension

- A map $f: X \rightarrow Y$ is D-bi-Lipschitz or has distortion D if for some λ and all $x, x^{\prime} \in X$:

$$
\lambda \cdot\left\|x-x^{\prime}\right\| \leq\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq D \cdot \lambda \cdot\left\|x-x^{\prime}\right\|
$$

 Is there a counterpart of the Kirszbraun theorem for bi-Lipschitz maps?

- For $\boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{n}}$, can every map $\boldsymbol{f}: \boldsymbol{A} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ of distortion D be extended to the whole \mathbb{R}^{n} keeping the same distortion?

Bi-Lipschitz Extension

A map $f: X \rightarrow Y$ is D-bi-Lipschitz or has distortion D if for some λ and all $x, x^{\prime} \in X$:

$$
\lambda \cdot\left\|x-x^{\prime}\right\| \leq\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq D \cdot \lambda \cdot\left\|x-x^{\prime}\right\|
$$

Is there a counterpart of the Kirszbraun theorem for bi-Lipschitz maps?

- For $\boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{n}}$, can every map $\boldsymbol{f}: \boldsymbol{A} \rightarrow \mathbb{R}^{\boldsymbol{m}}$ of distortion D be extended to the whole \mathbb{R}^{n} keeping the same distortion?
* No direct analogue!
- even if we allow $D^{\prime}>D$
- Not even a 1-1 continuous map

Example

Example

- No 1-1 continuous extension map from \mathbb{R} to \mathbb{R}

Example

- No 1-1 continuous extension map from \mathbb{R} to \mathbb{R}
- There exists such a map from \mathbb{R} to \mathbb{R}^{2}
> Fix: Allow additional coordinates

Bi-Lipschitz Outer-Extension

Given: a map $f: A \rightarrow \mathbb{R}^{m}$, where

- $A \subseteq X \subset \mathbb{R}^{\boldsymbol{n}}$
- f has distortion D

Bi-Lipschitz Outer-Extension

Given: a map $f: A \rightarrow \mathbb{R}^{m}$, where

- $A \subseteq X \subset \mathbb{R}^{\boldsymbol{n}}$
- f has distortion D

Goal: a map $f^{\prime}: X \rightarrow \mathbb{R}^{m^{\prime}}$, where

- $m^{\prime}>m$
- f^{\prime} has distortion D^{\prime}

- f^{\prime} is an (outer)-extension of f : for every $x \in A$

$$
f^{\prime}(x)=f(x) \oplus(0, \ldots, 0)
$$

$$
m^{\prime}-m
$$

Results

Consider a D-bi-Lipschitz map $f: A \rightarrow \mathbb{R}^{m}$ where $A \subset \mathbb{R}^{n}$,

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\boldsymbol{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{3 D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	one point	$\mathbf{1}+\Theta(\sqrt{\boldsymbol{\epsilon}})$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\mathbf{1}+\Theta\left(\frac{1}{\mathbf{l o g}^{2} \mathbf{1} / \boldsymbol{\epsilon}}\right)$	$\mathbb{R}^{\mathbf{2}}$

\square Show applications to dimension reduction

Results

Consider a D-bi-Lipschitz map $f: A \rightarrow \mathbb{R}^{m}$ where $A \subset \mathbb{R}^{n}$,

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\boldsymbol{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{3 D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1 + \epsilon}$	one point	$\mathbf{1 + \Theta (\sqrt { \boldsymbol { \epsilon } })}$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\left.\mathbf{1 + \Theta (\frac { 1 } { \operatorname { l o g } ^ { 2 } \mathbf { 1 } / \boldsymbol { \epsilon } }}\right)$	$\mathbb{R}^{\mathbf{2}}$

\square Show applications to dimension reduction

Counterpart of Kirszbraun

Given a map

- $\boldsymbol{f}(x): A \rightarrow \mathbb{R}^{m}$ (where $A \subset \mathbb{R}^{n}$) with distortion D

Come up with a bi-Lipschitz outer-extension of the map

- $\boldsymbol{f}^{\prime}(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \prime}$

Counterpart of Kirszbraun

Given a map

- $\boldsymbol{f}(\boldsymbol{x}): A \rightarrow \mathbb{R}^{m}$ (where $A \subset \mathbb{R}^{n}$) with distortion D

Come up with a bi-Lipschitz outer-extension of the map

- $\boldsymbol{f}^{\prime}(\boldsymbol{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \prime}$

New bi-Lipschitz outer extension:
Two applications of the Kirszbraun Lipschitz extension Theorem.

Proof Idea

Let

- $\boldsymbol{f}(\boldsymbol{x}): A \rightarrow \mathbb{R}^{m}$ be our map
- $\tilde{f}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$
f^{\prime}(x)=\tilde{f}(x)
$$

$>$ The distances might decrease a lot!

Proof Idea

Let

- $\boldsymbol{f}(\boldsymbol{x}): A \rightarrow \mathbb{R}^{m}$ be our map
- $\tilde{f}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$
f^{\prime}(x)=\tilde{f}(x) \oplus \boldsymbol{h}(x)
$$

$>$ The distances might decrease a lot!
\checkmark Add the second component $\boldsymbol{h}(\boldsymbol{x})$

- $\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}$ for all $\boldsymbol{x} \in \boldsymbol{A}$
- When $\tilde{\boldsymbol{f}}$ contracts \boldsymbol{h} should expand

Proof Idea

Let

- $\boldsymbol{f}(\boldsymbol{x}): A \rightarrow \mathbb{R}^{m}$ be our map
- $\tilde{f}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be its Lipschitz extension
- $g=\boldsymbol{f}^{-1}: f(A) \rightarrow \mathbb{R}^{n}$ be its inverse
- $\widetilde{g}(x): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$
f^{\prime}(x)=\tilde{f}(x) \oplus h(x) \quad \text { where } \quad h(x)=\widetilde{g}(\tilde{f}(x))
$$

\checkmark Add the second component $\boldsymbol{h}(\boldsymbol{x})$

- $\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}$ for all $\boldsymbol{x} \in \boldsymbol{A}$
- When $\tilde{\boldsymbol{f}}$ contracts \boldsymbol{h} should expand

Proof Idea

Let

- $\boldsymbol{f}(\boldsymbol{x}): A \rightarrow \mathbb{R}^{m}$ be our map
- $\tilde{f}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be its Lipschitz extension
- $g=f^{-1}: f(A) \rightarrow \mathbb{R}^{n}$ be its inverse
- $\widetilde{g}(x): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$
f^{\prime}(x)=\tilde{f}(x) \bigoplus h(x) \quad \text { where } \quad h(x)=\widetilde{g}(\tilde{f}(x))-x
$$

\checkmark Add the second component $\boldsymbol{h}(\boldsymbol{x})$

- $\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}$ for all $\boldsymbol{x} \in \boldsymbol{A}$

$$
\tilde{g}(\tilde{f}(x))-x=g(f(x))-x=0
$$

- When $\tilde{\boldsymbol{f}}$ contracts \boldsymbol{h} should expand

Proof Idea

Let

- $\boldsymbol{f}(\boldsymbol{x}): A \rightarrow \mathbb{R}^{m}$ be our map
- $\tilde{f}(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be its Lipschitz extension
- $g=f^{-1}: f(A) \rightarrow \mathbb{R}^{n}$ be its inverse
- $\widetilde{g}(x): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be its Lipschitz extension

New bi-Lipschitz outer extension:

$$
f^{\prime}(x)=\tilde{f}(x) \oplus h(x) \quad \text { where } \quad h(x)=\frac{\tilde{g}(\tilde{f}(x))-x}{\sqrt{2} D}
$$

\boldsymbol{f}^{\prime} is from \mathbb{R}^{n} to \mathbb{R}^{n+m}
For $x \in A, \boldsymbol{f}(x)=\boldsymbol{f}^{\prime}(x)$
Distortion is at most $3 D$

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\mathbf{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{3 D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	one point	$\mathbf{1}+\boldsymbol{\Theta}(\sqrt{\boldsymbol{\epsilon}})$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\mathbf{1}+\boldsymbol{\Theta}\left(\frac{\mathbf{1}}{\boldsymbol{l o g}^{\mathbf{2}} \mathbf{1} \boldsymbol{\epsilon}}\right)$	$\mathbb{R}^{\mathbf{2}}$

\square Show applications to dimension reduction

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\mathbf{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{3 D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	one point	$\mathbf{1}+\boldsymbol{\Theta}(\sqrt{\boldsymbol{\epsilon}})$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\mathbf{1}+\boldsymbol{\Theta}\left(\frac{\mathbf{1}}{\boldsymbol{l o g}^{\mathbf{1} / \boldsymbol{\epsilon}}}\right)$	$\mathbb{R}^{\mathbf{2}}$

\square Show applications to dimension reduction

Prioritized Dimension Reduction

Input:

- a set of n points P in \mathbb{R}^{d}
- a ranking π on them: a bijection from P to $[n]$

Goal: reduce the dimension s.t.

$$
f(x) \in \mathbb{R}^{g(r)} \subset \mathbb{R}^{c \log n}
$$

- where $r=\pi(x)$ is the rank of x and g is polylogarithmic

Prioritized Dimension Reduction

Input:

- a set of n points P in \mathbb{R}^{d}
- a ranking π on them: a bijection from P to $[n]$

Goal: reduce the dimension s.t.

$$
f(x) \in \mathbb{R}^{g(r)} \subset \mathbb{R}^{c \log n}
$$

- where $r=\pi(x)$ is the rank of x and g is polylogarithmic

	Distortion	\#Non-zero
[Elkin, Filtser, Neiman, STOC'15]	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{4+\epsilon} \boldsymbol{r}\right)$	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{4} \boldsymbol{r}\right)$
This work	$\boldsymbol{O}(\log \log \boldsymbol{r})$	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{3+\boldsymbol{\epsilon}} \boldsymbol{r}\right)$

Prioritized Dimension Reduction

Input:

- a set of n points P in \mathbb{R}^{d}
- a ranking π on them: a bijection from P to $[n]$

Goal: reduce the dimension s.t.

$$
f(x) \in \mathbb{R}^{g(r)} \subset \mathbb{R}^{c \log n}
$$

- where $r=\pi(x)$ is the rank of x and g is polylogarithmic

	Distortion	\#Non-zero
[Elkin, Filtser, Neiman, STOC'15]	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{4+\epsilon} \boldsymbol{r}\right)$	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{4} \boldsymbol{r}\right)$
This work	$\boldsymbol{O}(\log \log \boldsymbol{r})$	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{3+\boldsymbol{\epsilon}} \boldsymbol{r}\right)$

For two points at rank r and t,

- The time to compute their distance only depends on $\operatorname{polylog}(\max \{r, t\})$
- The distortion of their distance depends on $\log \log (\max \{r, t\})$

Proof Idea

\square Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.

\square Iterative Extension:

- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Proof Idea

Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.
\square Iterative Extension:
- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Construction of $\boldsymbol{f}_{\boldsymbol{i}}$ from $\boldsymbol{f}_{\boldsymbol{i - 1}}$

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$
f_{i-1}^{\prime}(x)=\widetilde{f_{i-1}}(x) \oplus h(x)
$$

Proof Idea

\square Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.

\square Iterative Extension:

- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Construction of $\boldsymbol{f}_{\boldsymbol{i}}$ from $\boldsymbol{f}_{\boldsymbol{i - 1}}$

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$
f_{i-1}^{\prime}(x)=\overline{f_{i-1}}(x) \oplus h(x)
$$

Bi-Lip ext. Lip ext.

Proof Idea

\square Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.

\square Iterative Extension:

- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Construction of $\boldsymbol{f}_{\boldsymbol{i}}$ from $\boldsymbol{f}_{\boldsymbol{i - 1}}$

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$
f_{i-1}^{\prime}(x)=\overline{f_{i-1}}(x) \bigoplus h(x)
$$

We do not change the map on S_{i-1} No new coordinates

Proof Idea

\square Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.

\square Iterative Extension:

- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Construction of $\boldsymbol{f}_{\boldsymbol{i}}$ from $\boldsymbol{f}_{\boldsymbol{i - 1}}$

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$
f_{i-1}^{\prime}(x)=\overline{f_{i-1}}(x) \oplus h(x)
$$

- We do not change the map on S_{i-1}
- No new coordinates
- $f_{i-1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d_{i-1}}$
- $d_{i}=d_{i-1}+d \quad>d$

Proof Idea

\square Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.

\square Iterative Extension:

- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Construction of $\boldsymbol{f}_{\boldsymbol{i}}$ from $\boldsymbol{f}_{\boldsymbol{i - 1}}$

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$
f_{i-1}^{\prime}(x)=\overline{f_{i-1}}(x) \bigoplus h(x)
$$

- Use JL
- Reduce dimension
- No longer an extension of $\boldsymbol{f}_{\boldsymbol{i}-1}$

Proof Idea

\square Grouping based on priorities

- $S_{1} \subset S_{2} \subset \cdots S_{T}$
- S_{1} have the highest priority points.
\square Iterative Extension:
- Given $f_{i-1}: S_{i-1} \rightarrow \mathbb{R}^{d_{i-1}}$
- Inductively construct $f_{i}: S_{i} \rightarrow \mathbb{R}^{d_{i}}$

Construction of $\boldsymbol{f}_{\boldsymbol{i}}$ from $\boldsymbol{f}_{\boldsymbol{i - 1}}$

1. The new bi-Lipschitz outer-extension on f_{i-1} :

$$
f_{i-1}^{\prime}(x)=\overline{f_{i-1}}(x) \bigoplus h(x)
$$

2. Compose partially with the JL mapping J to reduce dimension

Final Map:

$$
f_{i}(x)=\overline{f_{i-1}}(x) \bigoplus J(h(x))
$$

Details

\square Group sizes:

- S_{i} : first $2^{2^{C^{i}}}$ points for a constant $C \approx 4$

Details

\square Group sizes:

- S_{i} : first $2^{2^{C^{i}}}$ points for a constant $C \approx 4$
\square Dimension:
- A point at rank $r=2^{2^{c^{i}}}+1$:
- Dimension is $\log \left(2^{2^{c^{i+1}}}\right)=2^{c^{i} \cdot C}=\left(2^{c^{i}}\right)^{C}=(\log r)^{C}$

Details

\square Group sizes:

- S_{i} : first $2^{2^{C^{i}}}$ points for a constant $C \approx 4$
\square Dimension:
- A point at rank $r=2^{2^{c^{i}}}+1$:
- Dimension is $\log \left(2^{2^{c^{i+1}}}\right)=2^{c^{i} \cdot C}=\left(2^{c^{i}}\right)^{C}=(\log r)^{C}$

Distortion:

- Distortion is $3^{\# \text { groups }}=3^{i}=3^{\log \log \log r}=O(\log \log r)$

Prioritized Dimension Reduction

	Distortion	\#Non-zero
[Elkin, Filtser, Neiman, STOC'15]	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{4+\boldsymbol{\epsilon}} \boldsymbol{r}\right)$	$\boldsymbol{O}_{\boldsymbol{\epsilon}}\left(\log ^{4} \boldsymbol{r}\right)$
This work	$\boldsymbol{O}(\log \log \boldsymbol{r})$	$\boldsymbol{O}\left(\frac{\log ^{3+\epsilon} \boldsymbol{r}}{\boldsymbol{\epsilon}^{2}}\right)$
Setting parameters differently	$\boldsymbol{O}\left((3+\boldsymbol{\epsilon})^{\boldsymbol{t}}\right)$	$\boldsymbol{O}\left(\frac{\log r \log ^{1 / \boldsymbol{t}} \boldsymbol{n}}{\boldsymbol{\epsilon}^{2}}\right)$
Open Problem	$(1+\boldsymbol{\epsilon})$	$\boldsymbol{O}\left(\frac{\log ^{\boldsymbol{r}}}{\boldsymbol{\epsilon}^{2}}\right)$

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\mathbf{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{3 D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1 + \boldsymbol { \epsilon }}$	one point	$\mathbf{1 + \boldsymbol { \Theta } (\sqrt { \boldsymbol { \epsilon } })}$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\mathbf{1}+\boldsymbol{\Theta}\left(\frac{\mathbf{1}}{\boldsymbol{l o g}^{\mathbf{1} / \boldsymbol{1}}}\right)$	$\mathbb{R}^{\mathbf{2}}$

\square Show applications to dimension reduction

Extension by One Point

Given

- a map $f: A \rightarrow \mathbb{R}^{\boldsymbol{m}}$ (where $\boldsymbol{A} \subset \mathbb{R}^{\boldsymbol{n}}$) that has distortion $1+\epsilon$
- and any point $u \in \mathbb{R}^{n}$,
we can always extend the map to that point, i.e.,

$$
\boldsymbol{f}^{\prime}: \boldsymbol{A} \cup\{\boldsymbol{u}\} \rightarrow \mathbb{R}^{\boldsymbol{m + 1}}
$$

Increasing the distortion to $1+\sqrt{\epsilon}$

Lower Bound

- $f:\{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1+\epsilon)$

Lower Bound

- $f:\{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1+\epsilon)$
- Its extension to D increases the distortion to $1+\Omega(\sqrt{\epsilon})$

Lower Bound

- $f:\{A, B, C\} \rightarrow \mathbb{R}$ has distortion ($1+\epsilon$)
- Its extension to D increases the distortion to $1+\Omega(\sqrt{\epsilon})$
- $\|f(D)-f(A)\| \geq \sqrt{\epsilon}\left(1-\frac{\sqrt{\epsilon}}{2}\right)=\left(\sqrt{\epsilon}-\frac{\epsilon}{2}\right)$

Lower Bound

- $f:\{A, B, C\} \rightarrow \mathbb{R}$ has distortion $(1+\epsilon)$
- Its extension to D increases the distortion to $1+\Omega(\sqrt{\epsilon})$
- $\|f(D)-f(B)\|<(\sqrt{\epsilon}-\epsilon)\left(1+\frac{\sqrt{\epsilon}}{2}\right)=\left(\sqrt{\boldsymbol{\epsilon}}-\frac{\epsilon}{2}\right)$

Lower Bound

- $f:\{A, B, C\} \rightarrow \mathbb{R}$ has distortion ($1+\epsilon$)
- Its extension to D increases the distortion to $1+\Omega(\sqrt{\epsilon})$
- $\frac{\|f(D)-f(C)\|}{\|D-C\|}>\frac{1}{1-\sqrt{\epsilon}}>1+\sqrt{\epsilon}$

Terminal Dimension Reduction

Input: a set $X \subset \mathbb{R}^{d}$ of n terminals
Goal: find a map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ s.t. for any $p \in \mathbb{R}^{d}$ and any terminal $x \in X$,

$$
\|x-p\| \leq\|f(x)-f(p)\| \leq D \cdot\|x-p\|
$$

Terminal Dimension Reduction

Input: a set $X \subset \mathbb{R}^{d}$ of n terminals
Goal: find a map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ s.t. for any $p \in \mathbb{R}^{d}$ and any terminal $x \in X$,

$$
\|x-p\| \leq\|f(x)-f(p)\| \leq D \cdot\|x-p\|
$$

	Distortion	Dimension d^{\prime}
[Elkin, Filtser, Neiman, '17]	$\boldsymbol{O}(\mathbf{1})$	$\boldsymbol{O}(\log \boldsymbol{n})$
This work	$\mathbf{1}+\boldsymbol{\epsilon}$	$\boldsymbol{O}\left(\frac{\log \boldsymbol{n}}{\boldsymbol{\epsilon}^{4}}\right)$
[Narayanan, Nelson, '19]	$\mathbf{1}+\boldsymbol{\epsilon}$	$\boldsymbol{O}\left(\frac{\log \boldsymbol{n}}{\boldsymbol{\epsilon}^{2}}\right)$

Terminal Dimension Reduction

Input: a set $X \subset \mathbb{R}^{d}$ of n terminals
Goal: find a map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ s.t. for any $p \in \mathbb{R}^{d}$ and any terminal $x \in X$,

$$
\|x-p\| \leq\|f(x)-f(p)\| \leq D \cdot\|x-p\|
$$

- Apply JL on the set of terminals X to get a $\left(1+\epsilon^{2}\right)$-distortion embedding

	Distortion	Dimension d^{\prime}
[Elkin, Filtser, Neiman, '17]	$\boldsymbol{O}(\mathbf{1})$	$\boldsymbol{O}(\log n)$
This work	$\mathbf{1}+\boldsymbol{\epsilon}$	$\boldsymbol{O}\left(\frac{\log n}{\boldsymbol{\epsilon}^{4}}\right)$
[Narayanan, Nelson, '19]	$1+\boldsymbol{\epsilon}$	$\boldsymbol{O}\left(\frac{\log n}{\boldsymbol{\epsilon}^{2}}\right)$

Terminal Dimension Reduction

Input: a set $X \subset \mathbb{R}^{d}$ of n terminals
Goal: find a map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ s.t. for any $p \in \mathbb{R}^{d}$ and any terminal $x \in X$,

$$
\|x-p\| \leq\|f(x)-f(p)\| \leq D \cdot\|x-p\|
$$

- Apply JL on the set of terminals X to get a $\left(1+\epsilon^{2}\right)$-distortion embedding
- Use an extra dimension to simultaneously extend the map to all nonterminal points independently using our single point extension.

$$
(1+\epsilon) \text {-distortion }
$$

	Distortion	Dimension d '
[Elkin, Filtser, Neiman, '17]	$\boldsymbol{O}(\mathbf{1})$	$\boldsymbol{O}(\log n)$
This work	$\mathbf{1}+\boldsymbol{\epsilon}$	$\boldsymbol{O}\left(\frac{\log \boldsymbol{n}}{\boldsymbol{\epsilon}^{4}}\right)$
[Narayanan, Nelson, '19]	$\mathbf{1}+\boldsymbol{\epsilon}$	$\boldsymbol{O}\left(\frac{\log \boldsymbol{n}}{\boldsymbol{\epsilon}^{2}}\right)$

Results

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\mathbf{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{3 D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1 + \boldsymbol { \epsilon }}$	one point	$\mathbf{1 + \boldsymbol { \Theta } (\sqrt { \boldsymbol { \epsilon } })}$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1 + \boldsymbol { \epsilon }}$	To \mathbb{R}	$\mathbf{1}+\boldsymbol{\Theta}\left(\frac{1}{\boldsymbol{l o g}^{2} 1 / \boldsymbol{\epsilon}}\right.$	\mathbb{R}^{2}

\square Show applications to dimension reduction

Extension to the Line

Given: a $(1+\epsilon)$-distortion map $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$ Goal: extend it to the whole line \mathbb{R}, i.e., $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}^{2}$

Extension to the Line

Given: a $(1+\epsilon)$-distortion map $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$

- such a map should be very structured.

Extension to the Line

Given: a $(1+\epsilon)$-distortion map $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$

- such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: $(1,2,4,3)$

Extension to the Line

Given: a $(1+\epsilon)$-distortion map $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$

- such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: $(1,2,4,3),(2,1,4,3)$

Extension to the Line

Given: a $(1+\epsilon)$-distortion map $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$

- such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: $(1,2,4,3),(2,1,4,3),(2,3,4,1)$

Extension to the Line

Given: a $(1+\epsilon)$-distortion map $f: A \rightarrow \mathbb{R}$ where $A \subset \mathbb{R}$

- such a map should be very structured.

Permutations: permutation corresponding to the ordering defined by the map: $(1,2,4,3),(2,1,4,3),(2,3,4,1),(3,4,2,1), \ldots$

Permutations

Consider the permutation corresponding to the ordering defined by the map. Are all permutations possible?

Permutations

Consider the permutation corresponding to the ordering defined by the map. Are all permutations possible?

- Lemma 1: a permutation is valid iff it excludes $(3,1,4,2)$ and $(2,4,1,3)$ as a "sub-permutation"

Permutation: 4625731

Permutations

Consider the permutation corresponding to the ordering defined by the map. Are all permutations possible?

- Lemma 1: a permutation is valid iff it excludes (3,1,4,2) and $(2,4,1,3)$ as a "sub-permutation"

Permutation: 4625731
Not valid: 4625731
6273
3142

Permutations

Consider the permutation corresponding to the ordering defined by the map. Are all permutations possible?

- Lemma 1: a permutation is valid iff it excludes $(3,1,4,2)$ and $(2,4,1,3)$ as a "sub-permutation"
- Lemma 2: such a permutation can be decomposed into a sequence of "laminar flips" (reversing an interval)
$(1,2,3,4,5,6) \rightarrow(3,2,1,4,5,6) \rightarrow(3,1,2,4,5,6) \rightarrow(3,1,2,4,6,5)$

Spirals

\square Basic case: consider f which maps $(0, \epsilon, 1)$ to $(0,-\epsilon, 1)$; extend it to the segment $[0,1]$

Spirals

\square Basic case: consider f which maps $(0, \epsilon, 1)$ to $(0,-\epsilon, 1)$; extend it to the segment $[0,1]$

- Map using a single spiral
- Map $[0, \epsilon]$ to $[0,-\epsilon]$ linearly
- For $\epsilon \leq x \leq 1$ map x to $g(x)=(\boldsymbol{r}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}))$ in polar coordinates
- $r(x)=x$ and $\phi(x)=\frac{\pi \ln 1 / x}{\ln 1 / \epsilon}$
- Distortion is $1+O\left(1 / \ln ^{2}(1 / \epsilon)\right)$
- This is tight!

Spirals

Basic case: consider f which maps $(0, \epsilon, 1)$ to $(0,-\epsilon, 1)$; extend it to the segment $[0,1]$

- Map using a single spiral
- Map $[0, \epsilon]$ to $[0,-\epsilon]$ linearly
- For $\epsilon \leq x \leq 1$ map x to $g(x)=(\boldsymbol{r}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}))$ in polar coordinates
- $r(x)=x$ and $\phi(x)=\frac{\pi \ln 1 / x}{\ln 1 / \epsilon}$
- Distortion is $1+O\left(1 / \ln ^{2}(1 / \epsilon)\right)$
- This is tight!

\square General case: for each flip
- we add a spiral of the "right" scale

Open Problems

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\mathbf{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$3 \boldsymbol{D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	one point	$\mathbf{1}+\boldsymbol{\Theta}(\sqrt{\boldsymbol{\epsilon}})$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\mathbf{1}+\boldsymbol{\Theta}\left(\frac{\mathbf{1}}{\boldsymbol{l o g}^{\mathbf{2}} \mathbf{1 / \epsilon}}\right)$	$\mathbb{R}^{\mathbf{2}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{1}+\boldsymbol{g}(\boldsymbol{\epsilon})$?

\square Prioritized Dimension Reduction

Distortion	\#Non-zero
$1+\epsilon$	$(\log r) / \epsilon^{2}$

Open Problems

Thanks!

@uestions?

n	m	Initial distortion	Type of extension	New distortion	New image
any	any	\mathbf{D}	To $\mathbb{R}^{\boldsymbol{n}}$	$3 \boldsymbol{D}$	$\mathbb{R}^{\boldsymbol{n + m}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	one point	$\mathbf{1}+\boldsymbol{\Theta}(\sqrt{\boldsymbol{\epsilon}})$	$\mathbb{R}^{\boldsymbol{m + 1}}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}+\boldsymbol{\epsilon}$	To \mathbb{R}	$\mathbf{1}+\boldsymbol{\Theta}\left(\frac{\mathbf{1}}{\boldsymbol{\operatorname { l o g }}^{\mathbf{2}} \mathbf{1 / \epsilon}}\right)$	$\mathbb{R}^{\mathbf{2}}$
any	any	$\mathbf{1}+\boldsymbol{\epsilon}$	To $\mathbb{R}^{\boldsymbol{n}}$	$\mathbf{1}+\boldsymbol{g}(\boldsymbol{\epsilon})$?

\square Prioritized Dimension Reduction

Distortion	\#Non-zero
$1+\epsilon$	$(\log r) / \epsilon^{2}$

